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Abstract: A skew edge coloring of a graph G is defined as a set of two edge
colorings such that no two edges are assigned the same unordered pair of colors.
The skew chromatic index s(G) is the minimum number of colors required for a
skew edge coloring of G. In this article, we develop an algorithm for skew edge
coloring of 2−rooted sibling trees and cyclic snake graphs. The minimum number
of colors k which is known as the skew chromatic index is determined depending
upon the number of edges of G. Furthermore, it is proved that the bound on the
skew chromatic index s(G) ≥ max{∆(G), k(|E(G)|)} is sharp for the family of
graphs considered for skew edge coloring.
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1. Introduction
Edge coloring problem is one of the fundamental problems on graphs, which

appears in various scheduling problems like file transfer problems on computer net-
works. It has wide variety of applications like job scheduling, timetable designing,
and assignment of frequencies in wireless communications etc. They are well stud-
ied in both computer science and mathematics [9]. Let G = (V,E) be a finite,
simple, connected undirected graph with vertex set V and edge set E. A proper
edge coloring of a graph G is an assignment of colors to the edges of G so that no
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two adjacent edges are assigned the same color [3]. The minimum number of colors
required for an edge coloring of G is the edge chromatic number or the chromatic
index and is denoted by χ′(G). Let ∆(G) denote the maximum degree of vertices
of a graph G. It has been proved by Vizing [11] that for any simple graph G, χ′(G)
is either ∆(G) or ∆(G)+1. The problem of determining the chromatic index of an
arbitrary graph is a difficult task. Holyer [6] has proved that edge coloring problem
is NP−complete. In this paper, we consider skew edge coloring problems that
are inspired from the study of skew Room squares. The concept of skew chromatic
index was introduced by Marsha F. Foregger and better upper bounds for s(G) was
discussed when G is cyclic, cubic or bipartite [4]. All the notations and definitions
used in this paper are as in [2]. A skew edge coloring of a graph G is an assignment
of an ordered pair of colors (ai, bi) to each edge ei of G such that the ai’s form an
edge coloring of G, the bi’s form an edge coloring of G, and the pairs {ai, bi} are all
distinct. The two edge colorings are referred to as component colorings of the skew
edge coloring. The skew chromatic index s(G) is the minimum number of colors
required for a skew edge coloring of G. For example, s(K3) = 3 where the first and
the second component colorings of K3 are 1, 2, 3 and 2, 3, 1 respectively. It can be
observed that not less than three colors can be used for skew edge coloring of K3.
See Figure 1.
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Figure 1: (a) First component coloring of K3. (b) Second component
coloring of K3. (c) Skew edge coloring of K3.

In this paper, we develop a common algorithm for skew edge coloring of 2−rooted
sibling trees and cyclic snake graphs and the skew chromatic index of these graphs
are also solved in polynomial time.

2. Lower Bound on s(G)

Skew chromatic index, s(G) is the minimum number of colors used in two edge col-
orings of G such that no two edges are assigned the same unordered pair of colors.
Since each component coloring of a skew edge coloring is itself an edge coloring we
have s(G) ≥ χ′(G). But by Vizing’s lemma, we have ∆(G) ≤ χ′(G) ≤ ∆(G) + 1.
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Hence s(G) ≥ ∆(G). Thus if ‘k’ colors are used for skew edge coloring, then there
are
(
k+1
2

)
unordered pairs of colors and this number must be at least as large as the

number of edges in G. Let k(m) denote the smallest integer ‘k’ satisfying
(
k+1
2

)
≥ m

where ‘m’ denotes the number of edges in G. Thus the best lower bound for s(G)
is s(G) ≥ max{∆(G), k(|E(G)|)} [4]. Our strategy is to obtain s(G) for a given
graph G and prove that the lower bound given here is sharp for the graph.

3. Sibling trees and cyclic snake graphs

In this section, we develop a common algorithm for skew edge coloring of 2−rooted
sibling trees and cyclic snake graphs. A tree is a connected graph that contains
no cycles. The most common type of tree is the binary tree. It is so named be-
cause each node can have at most two descendants. A binary tree is said to be a
complete binary tree if each internal node has exactly two descendants. These de-
scendants are described as left and right children of the parent node. Binary trees
are widely used in data structures because they are easily stored, easily manipu-
lated, and easily retrieved. Also, many operations such as searching and storing
can be easily performed on tree data structures. Furthermore, binary trees appear
in communication pattern of divide-and-conquer type algorithms, functional and
logic programming, and graph algorithms. A rooted tree represents a data structure
with a hierarchical relationship among its various elements. Tree based networks
have fixed degree nodes and are suitable for massively parallel systems. There are
many tree derived architectures like hyper tree, shuffle hyper tree, X−tree, brother
tree, slim tree. In this section, we consider one such tree derived architecture called
2−rooted sibling tree and determine its skew chromatic index.

Definition 3.1. [10] For any non-negative integer r, the complete binary tree of
height r, denoted by Tr, is the binary tree where each internal vertex has exactly
two children and all the leaves are at the same level. A complete binary tree Tr has
r levels and contains 2i−1 vertices at level i, 1 ≤ i ≤ r.

Definition 3.2. [10] The 1−rooted sibling tree ST 1
r is obtained from the 1−rooted

complete binary tree T 1
r by adding edges (sibling edges) between left and right chil-

dren of the same parent node. The n−rooted sibling tree ST n
r is obtained by taking n

vertex disjoint 1−rooted sibling tree ST 1
r on 2r vertices with roots say r1, r2, . . . , rn

and adding edges (ri, ri+1), 1 ≤ i ≤ n− 1. See Figure 2.
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Figure 2: n−rooted sibling tree ST n
4 .

In this paper, we restrict our discussion to n = 2 and develop algorithm for skew
edge coloring of 2−rooted sibling trees ST 2

r , r ≥ 4 and STr is a complete binary
tree Tr with sibling edges between the left and right children of the same parent
node. STr consists of 2r−1K3’s at each level i, 1 ≤ i ≤ r − 1.

3.1. Construction of the edge set of ST 2
r .

Based on the incidence relation among vertices and edges, a systematic ordering of
edges is done to construct the edge set E(G) = {e1, e2, e3, . . . , em} as follows:
Step (i): Let e1 = r1r2.
Step (ii): Consider the left 1−rooted sibling tree ST 1

r and label e2 = r1R1 and
order the left, right and the sibling edges of K3 in level 1 as e3, e4 and e5 respectively.
Step (iii): Order the remaining edges of ST 1

r as e6, e7, e8, . . . , em+1
2

by adopting

the following principle.
(i) When ordering any K3, label its left, right and sibling edges taken in order.
(ii) After ordering K3 at any level, label K3 in the next level which is lying at the
left end of the sibling edge.
(iii) Before ordering K3 at the right end of any sibling edge at the ith level, see that
the left sub tree STi in the same level is ordered.
Step (iv): Consider the right 1−rooted sibling tree ST 1

r and order em+3
2

= r2R2

and order the remaining edges using step (iii).
Figure 3 shows the labeling of edges of ST 2

4 in order to obtain its skew edge coloring.
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Figure 3: Labeled 2−rooted sibling tree ST 2
4 .
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3.2. Cyclic snake graph

A block of a graph G is a maximal connected sub graph of G that has no cut
vertex. The block-cut-point-graph of G is a bipartite graph H in which one partite
set consists of the cut-vertices of G, and the other has a vertex bi for each block Bi

of G.
Rosa [8] has defined a triangular snake TSn as a connected graph in which all
blocks are triangles and the block-cut-point graph is a path. A triangular cactus
is a connected graph all of whose blocks are triangles [1].

Definition 3.3. A triangular snake TSn with n blocks is a graph obtained from a
path u1, u2, . . . , un, un+1 by joining ui and ui+1 to a new vertex vi, i = 1, 2, 3, . . . , n.

Definition 3.4. A diamond snake graph DSn [5] is obtained by joining vertices vi
and vi+1 to two new vertices ui and wi for i = 1, 2, 3, . . . , n. It is also known as
diamond necklace. A diamond snake graph has 3n+ 1 vertices and 4n edges, where
n is the number of blocks in the diamond necklace.

Definition 3.5. [7] A bCn−snake is defined as a connected graph in which all
the blocks are isomorphic to the cycle Cn and the block-cut point graph is a path
P , where P is the path of minimum length that contains all the cut vertices of a
bCn−snake and b is the number of blocks. It is a graph with (n − 1)b + 1 vertices
and nb edges.

3.3. Construction of the edge set bCn.

Construct the edge set E(G) = {e1, e2, e3, . . . , em} as follows:
Let V (bCn) = {vi,j, 1 ≤ i ≤ b, 1 ≤ j ≤ n}. It can be noted that vi,1 = vi+1,2, i =
1, 3, 5, . . . , b− 1, if b is even and vi,1 = vi+1,2, i = 1, 3, 5, . . . , b− 2, if b is odd.
Also, vi+1,2 = vi,3, i = 2, 4, 6, . . . , b−2, if b is even and vi+1,2 = vi,3, i = 2, 4, 6, . . . , b−
1, if b is odd.
Starting with the leftmost block of the cyclic snake, one block is taken at a time
and the edges of every block are ordered in anticlockwise direction. The edge set
is given by
E(G) = E(bCn) = {e(i−1)n+j = vi,jvi,j+1, ein = vi,nvi,1, 1 ≤ i ≤ b, 1 ≤ j ≤ n− 1}.
Figure 4 shows the labeling of edges of 8C10 in order to obtain its skew edge coloring.
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Figure 4: Generalised cyclic snake graph bCn.

Algorithm for skew edge coloring.

We now present an algorithm for skew edge coloring of 2−rooted sibling tree and
cyclic snake graphs.
Input: A graph G = ST 2

r , r ≥ 4 or a cyclic snake G = bCn, n ≥ 5 and b ≥⌊
n2+7n+12

2n

⌋
.

Step 1: Find the smallest positive integer ‘k’ satisfying
(
k+1
2

)
≥ m, where ‘m’

denotes the number of edges of the graph G.
Step 2: Consider the set of colors {1, 2, 3, . . . , k}.
Step 3: Form the set U of distinct unordered pairs of colors defined by U ={
{c, c+ t}c=1,2,3,...,k−t

⋃
{k − t+ i, i}i=1,2,3,...,t

}
t=0,1,2,3,...,b k2c

.

Step 4: Define the set of distinct pairs of colors S = {p1, p2, . . . , pm} ⊆ U where
pi’s are the first m elements of U taken in order.
Step 5: Construct the edge set E(G) = {e1, e2, e3, . . . , em} as mentioned in section
3.1 or 3.3.
Step 6: Color G using the mapping defined by f : E(G) → S such that f(ei) =
pi, 1 ≤ i ≤ m.
Output: Skew edge coloring of G.

Proof of correctness. Since there are m edges, find the smallest positive inte-
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ger ‘k’ in such a way that
(
k+1
2

)
≥ m, so that

(
k+1
2

)
pairs are available for skew

edge coloring of the graph. The coloring of edges is done in a specific order as
mentioned in Step 5 of the algorithm. First k edges are assigned the colors in
such a way that all ordered pairs of the form (c, c), c = 1, 2, 3, . . . , k are used.
In the second set of k edges, the first k − 1 edges are assigned the colors of the
form (c, c + 1), c = 1, 2, 3, . . . , k − 1. The kth edge is assigned the color (k, 1).
In the third set of k edges, the first k − 2 edges are assigned colors of the form
(c, c+ 2), c = 1, 2, 3, . . . , k−2. The (k−1)th edge and the kth edge are assigned the
colors (k − 1, 1) and (k, 2) respectively. This process is continued till all the edges
are colored and the above method of edge coloring gives skew edge coloring of the
graph. See Figure 5 and 6.
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Figure 5: Skew edge coloring of ST 2
4 with s(G) = 9.

Theorem 3.6. Let G be a 2−rooted sibling tree ST 2
r with r ≥ 4 and m = 3(2r−1)

edges. Then s(G) =
⌈
−1+

√
1+8m
2

⌉
.

Proof. Since there are m edges, at least m pairs of colors are required for skew
edge coloring of G. If ‘k’ colors are used for coloring, then there are

(
k+1
2

)
unordered

pairs. This
(
k+1
2

)
must be at least as large as the number of edges in G. Therefore

the smallest positive integer ‘k’ is chosen in such a way that
(
k+1
2

)
≥ m. i.e, (k+1)k

2
≥

m. It follows that k2 + k ≥ 2m. i.e, k2 + k − 2m ≥ 0. Thus solving for ‘k’ and
taking the positive root, we obtain k = −1+

√
1+8m
2

≥ 0, and its greatest integer

k =
⌈
−1+

√
1+8m
2

⌉
will be the minimum number of colors used in skew edge coloring.

Therefore s(G) = k =
⌈
−1+

√
1+8m
2

⌉
=

⌈
−1+
√

1+24(2r−1)
2

⌉
.

Theorem 3.7. Let G = bCn be a cyclic snake graph with b blocks of Cn, where

n ≥ 5, b ≥
⌊
n2+7n+12

2n

⌋
. Then s(G) =

⌈
−1+

√
1+8bn
2

⌉
.
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Figure 6: Skew edge coloring of 8C6 with s(G) = 10.

Thus based on the lower bound for skew edge coloring, we obtain an optimal
solution for skew chromatic index of 2−rooted sibling trees and cyclic snake graphs.

4. Time Complexity Analysis of the Algorithm

The pseudo code of the coloring algorithm is given as follows.

Algorithm 3.8. Skew edge coloring of G.
Input: Number of edges m, maximum degree ∆(G) of graph G.

Minimum number of colors k = max

{
∆(G),

⌈
−1 +

√
1 + 8m

2

⌉}
count = 1
For i = 0 to k − 1
For j = 1 to k
If count ≤ m then
Increment count by 1
If ((j + i)%k) = 0 then
Print (j, k)
Else
Print (j, (j + i)%k)
End if
Else
Break
End if
End for
End for
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Output: Skew edge coloring of the graph.

The time complexity of the algorithm is O(m), where m is the number of edges of
the graph. The algorithm runs in linear time as its execution is directly proportional
to the input size m.

5. Conclusion
In this paper, an algorithm has been developed for skew edge coloring of

2−rooted sibling trees and cyclic snake graphs and also an optimal solution for
s(G) is obtained. It would be interesting to identify the skew chromatic index of
other tree derived networks.
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